3.2 氣密線不共面
單元式幕墻采用等壓原理(
雨幕原理或雨屏原理)進行設計,在氣密線與水密線之間有空腔,稱為等壓腔。對一個單元來說,其四周的等壓腔可能是相通的,個別橫滑結構,采用
打膠的辦法按單元橫向密封,那么至少有三邊的等壓腔是相通的。氣密線是最后的防線,如果斷開會造成滲漏,因此,如果單元的橫向和縱向型材的氣密線不共面,將會存在永久的孔洞,是造成水和氣滲漏的隱患。
3.3 單元板塊內部面板與框架直接采用結構膠粘接
“不能現場打注硅酮結構膠”是大家的共識,也是規范的強制規定,單元板塊內部面板與框架直接采用結構膠粘接可以在具備條件的室內打膠環境中完成,沒有問題?墒侨绻こ讨
玻璃板塊需要更換,這種結構就必須在現場打注結構膠,如果溫度、濕度等環境條件不具備,膠縫質量無法得到保證,因此需要從構造設計上解決這個問題。
3.4 氣密線、水密線采用對接
膠條
采用膠條對接、膠條插接進行密封的單元幕墻系統,密封效果欠佳,這類系統對幕墻施工質量要求較高:(1)需要安裝時比較精確;(2)對接部位需要壓緊,否則如果壓力不夠或土建施工誤差偏大,將無法實現密封;而插接膠條應當居中,否則也會導致滲漏問題;(3)需要設置獨立的傳力構件傳遞荷載。試驗表明這類結構的幕墻滲漏可能性較大,工程中慎用。
3.5 水密線全封閉
除非采用豎料實現內部排水,水密線不得全部密封,應設置排水孔,且排水孔部位應采用海綿等封堵,防止雨水倒灌。
3.6 大跨距型材采用開口斷面
開口薄壁型材在掛點的安裝方面比較方便,相對來說,也比較經濟,但其安裝時精度也不宜得到保證,承載力也不如箱型斷面。
3.7封邊、收邊部位未形成等壓腔
單元幕墻通常四邊等壓腔是連通的,至少有三邊是連通的。封邊未形成等壓腔將導致:(1)型材端口將不密封;(2)結構傳力將會受到影響,沒有公料、母料相配,使得型材總斷面變小,且無法插接傳力。
3.8 圓弧插接和單膠條插接
單元幕墻采用圓弧插接方式,能比較好的滿足建筑立面要求,但設計不好,可能會造成滲漏。單膠條插接比較常見,密封效果稍差,盡量采用雙膠條。
4 點支承式幕墻與全玻璃幕墻
4.1索結構未采用拉力保護器
通常采用點式幕墻實現不同基礎的建筑物之間的聯系,形成連續的美學概念;近年來,單層索網結構的應用也逐漸廣泛。這類結構中的拉索軸向剛度較大,如果結構或支座發生較大位移,其內力會有很大升高,甚至會造成拉索破斷,因此需要采用保護器(彈簧補償器)進行補償,以便吸收支座在常規條件產生的變形;在地震等極端條件下,如果變形很大,保護器內預設的構件可以發生斷裂破壞,但是仍然要發揮作用,保證系統不至于坍塌崩潰,具有剩余強度。
4.2 大跨屋面與立面幕墻未采用柔性連接縫
大跨屋面可能會產生較大的變形,采用通常的構造一般無法滿足要求,一般有以下方案:
(1)采用連桿機構傳力和吸收變形,采用風琴
橡膠板進行密封;(2)采用長圓孔,但調節量有限。
4.3 支承點的熱橋問題
四角支承、邊部點支承的構件是點支承幕墻的主要傳力構件,也是該類幕墻的熱橋,處理不當會出現結露現象,采應取構造措施予以避免。
4.4 玻璃肋與面板對縫
這種設計方法將玻璃肋與面板的薄弱部位放在同一平面,更容易出現問題,如果錯開,能起到相互的補償作用。并且玻璃肋拼接的螺栓數量為每端兩個為宜,超過兩個可能帶來其他問題。
4.5 點支承用玻璃肋不夾膠
點支承玻璃肋是
結構構件,目前積累的經驗不多,在GB/T21086-2007《建筑幕墻》中,沒有給出玻璃肋
撓度限值要求。但在實際應用中,常有玻璃肋不夾膠的設計,作為玻璃結構,必須具有可靠性,因此必須采用夾層玻璃。在
采光頂中即玻璃梁,也是采光頂工程設計的難點,在已經報批的《
采光頂與金屬屋面工程技術規程》中也未對玻璃梁做出規定,幕墻設計時應當謹慎。
4.6正負風壓承載力相差較大的支承結構
建筑幕墻的支承結構應能承受正負風壓作用,一些結構可能正壓方向承載力較好,負風壓方向則較差,工程中盡量避免采用,尤其在負風壓起控制作用的部位。如果采用
預應力的方法能夠獲得可靠的結構體系,也應定期進行檢查,避免出現安全問題。
4.7平面桁架無平面外支承
大跨度平面桁架在幕墻中有較多應用,對這些結構應進行側向失穩驗算,必要時增加側向支承,避免側向失穩,提高結構的可靠性。
4.8 重力索缺失
重力索在點支承幕墻中有較多應用,近年來的設計趨于廢掉重力索,這是個誤區。一些結構采用重力索,不僅滿足系統的傳力要求,還有利用于固定面板的位置,減少連接點附近的面板所受的彎矩作用,從而提高了系統的可靠性。
4.9 玻璃肋側向失穩
玻璃肋側向易失穩,對跨度較大的工程應采取構造措施進行加固,避免失穩。
4.10 吊掛高度不合理
吊掛玻璃是玻璃重力傳遞比較合理的構造,因此一般工程均可采用,但會帶來成本上的提高。根據GB50210規定,玻璃高度超過4m時即要采用吊掛結構,過于苛刻。一般來說可按表1進行設計:
4.11 吊掛玻璃重力傳遞不合理
吊掛玻璃時,下部應懸空設計,以便吸收玻璃因結構、溫度等原因產生伸長或縮短變形,不能采用墊塊墊死。
4.12 吊掛全玻幕墻上下封口不傳力
全玻幕墻主要靠面板和玻璃肋傳遞荷載,因此玻璃肋上下兩端應該固定,大面玻璃上下也要有相應構造處理,以便傳遞水平荷載。
5 石材幕墻
5.1 龍骨全焊接
在JGJ133《
金屬與石材幕墻工程技術規范》中,橫梁和立柱應采用螺栓連接,是強制性條文,不允許焊接,但工程中經常采用全部焊接的構造。在技術層面:焊接是可行的;在法律層面:焊接是必須禁止的。從技術角度出發,橫梁一端焊接,另一端螺栓連接是比較好的方案。
5.2 T型掛件和蝴蝶扣掛件
這兩種掛件在市場上的占有率比較高,價格便宜,平整度好。但在安裝完成后形成大片連續不可錯動墻面,一方面維修更換困難,另一方面抗風振、抗地震性能較差,在汶川地震中也有失敗的報道。在GB/T21086-2007《建筑幕墻》中,已經明確“不宜采用”。在振動臺抗震試驗中,也發現該類掛件的存在缺陷。北京已將該類掛件列為強制淘汰產品。
5.3 開放石材懸空保溫系統無抗風壓能力
由于石材面板間膠縫可能會對石材造成污染(
硅油污染或吸灰污染),使一些建筑師寧愿設計開縫式石材系統。如果按照JGJ133《金屬與石材幕墻工程技術規范》的規定,
保溫材料與主體結構之間應留有50mm的空間,即保溫材料懸空布置。由于外層石材面板為開縫式系統,風壓會部分地作用在保溫材料上,即要求
保溫層應具有抗風壓性能。
5.4 8MPa以下石材無加強構造
在GB/T21086-2007《建筑幕墻》中規定:
彎曲強度標準值小于8.0MPa的石材面板,應采取附加構造措施保證面板的可靠性。
5.5板塊粘接
石材面板不能采用粘接,應該采用機械連接,確保其耐久性和可靠性。北京某工程粘接石材出現斷裂現象,還有工程出現開膠現象。
5.6 使用朝天縫、錯縫
由于污染和曝曬等原因的影響,朝天縫更容易失效,除非建筑師強烈要求,盡量避免使用朝天縫。錯縫連接對石材面板的幾何尺寸要求較高,同時掛接難度高,一般盡量不用。
5.7 SE掛件傳力途徑應明確
SE掛件是比較成熟的掛接系統,但應設計好傳力途徑,否則仍然會出問題。一般應采用下部兩點,即S形掛件作為承載點,F形掛件不承受重力荷載,僅承受風載。設計時應留有足夠的間隙,即使石材面板發生沉降,F形掛件仍然不承受重力荷載。
5.8 短橫梁
短橫梁可以節省幕墻的材料用量,尤其對面板比較小的工程,效果比較明顯,特別適合與輕質面板,如
瓷板、
陶板和
千思板等,在石材幕墻的應用中,不值得推薦,會存在間隙調整困難,平面度差等問題,盡可能不用。
5.9 大面石材幕墻層間封堵問題
2009年,TVCC大火給幕墻行業帶來巨大的震動。根據公安部、住房和城鄉建設部聯合發布的《民用建筑外保溫系統及外墻裝飾防火暫行規定》(公通字[2009]46號)的文件精神:“(1)建筑高度大于等于24m時,保溫材料的
燃燒性能應為A級。(2)建筑高度小于24m時,保溫材料的燃燒性能應為A級或B1級。其中,當采用B1級保溫材料時,每層應設置水平
防火隔離帶。(3)保溫材料應采用不燃材料作防護層。防護層應將保溫材料完全覆蓋。防護層厚度不應小于3mm!保竺媸哪粔Σ捎肂1級保溫材料時,層間應進行封堵。
5.10 跨間短槽(斜鉤)支承
無論是相向還是相反的跨間短槽連接均不可靠,應避免使用。
5.11 面板與龍骨無橫向定位
與單元幕墻掛點一樣,石材面板的掛接也應遵循一定的規則,四點之中應該有一點與龍骨相對規定,其余三點能夠吸收溫度變形,承受垂直幕墻表面的荷載。
5.12 面板厚度不滿足標準要求
花崗巖面板厚度至少為25,其他石材GB21086有明確的規定,見表2。一些業外人士開發的幕墻
板材系統,在15mm厚的石材后部附加一些保溫材料,或一些可靠性不高的支承構造,面板仍然為主要受力構件。這種系統工程應用后,由于沒有標準支持,無法進行驗收,造成大量的浪費。實踐中,石材厚度不滿足要求的工程,有些出現安全問題。例如北京某工程采用20mm的紅色洞石,還沒有通過驗收即破裂脫落;廣州某工程30厚紅砂巖風化嚴重,出現破裂。
5.13 伸縮縫不能傳遞彎矩
采用
角鋼或
槽鋼制作的立柱,在伸縮縫部位應進行專門設計,否則不能傳遞彎矩。
5.14 h形掛件的保護套設計
h形掛件是比較簡單的一種掛件,在
瓷板幕墻中有較為廣泛的應用,一些設計為了防止滑動時產生噪音,并避免鋼鋁直接接觸產生雙金屬接觸腐蝕,在其搭接部位設置U形
襯墊,由于設計不當,導致掛件承載部分壁厚大大削弱,存在安全隱患。
上一頁123下一頁