鋁型材擠壓模CAE技術是利用CAD中建立的擠壓產品模型、結合擠壓工藝與控制參數、完成其成形過程分析和相應模具優化設計的一種數值技術。
具體做法為:在擠壓模初步設計的基礎上,根據事先擬定的工藝試驗方案,利用計算機仿真整個擠壓成形過程,獲得擠壓變形體內的應力、應變、溫度、流速等物理量分布,以及擠壓各階段的壓力、溫度、速度等工藝參數變化情況;確定擠壓模工作帶斷面和分流孔、焊合腔、導流槽等模具結構對成形鋁材流動的影響,模具使用過程中可能出現的變形、塌陷、崩刃、裂口、磨損、”粘著”和疲勞等缺陷及其位置;提出分析報告并向設計人員推薦合適的擠壓條件,設計人員再根據CAE分析結果修正模具設計方案。經過數次反復,直到模具設計方案滿足產品設計要求和產品質量要求為止。這實際上是將生產現場的”試模-修模-試模”過程轉移到計算機上完成,以部分替代模具設計制造過程中費時費事的試模工作,從而減少該階段的材料和能源消耗,降低生產成本,并據此設計出高質量的鋁型材擠壓模具。
雖然CAE技術已在鋁型材擠壓模具設計制造領域得到了某些成功的應用,但真正面向模具工程師的應用卻很少。這主要是由于目前國內外還沒有專門針對鋁型材擠壓模開發的CAE軟件,所以,當模具工程師借助一些通用或專用CAE軟件(如ANSYS/LSDYNA、MARC/AutoForge、Deform 等)進行模具設計方案和模具結構分析時,除要求使用者具備扎實的擠壓工藝和擠壓模設計制造專業知識、熟悉擠壓模各零部件在耦合場環境中的工作狀況外,還要求他對數值模擬技術及相應有限元分析方法必須有較深入的了解,這對于工作在生產第一線的工程技術人員而言是比較難的,這也是CAE技術在擠壓模具行業中得不到廣泛應用的重要原因之一。
鋁型材擠壓模CAE的應用可以縮短模具的設計制造周期,提高模具的質量,增強企業市場競爭力。然而,只有解決了上述問題,才能使CAE技術真正在擠壓模具行業中得到廣泛應用。這正是鋁型材擠壓模CAE技術研究的意義。