4.2 幕墻支承鋼結構的焊接
焊接是目前鋼結構最可靠的連接方式之一。萬噸巨輪的船體是焊接的,可以抗擊狂風巨浪;核反應堆的外殼是焊接的,可以耐受高溫、高壓和幅射;百層以上的高樓大廈是焊接的,可以抵抗強烈地震和臺風。因此,在幕墻鋼結構上采用焊接,完全是可以的。
正如本文1.1節中所述,幕墻有非常多的環節可以提供
變形和位移的性能,部分環節采用焊接并不妨礙幕墻耐受大變形的能力。本文作者參與的十余項幕墻工程中,不少連接都采用焊接。深圳一些工程在強大臺風吹襲下多次經受了考驗;多個振動臺試驗表明,部分連接采焊接的幕墻,在8、9度罕遇
地震作用下,位移達1/60~1/50,也無一破損。大量實踐證明:不允許焊接是沒有道理的。
至于現場焊接的質量,那是施工管理的問題,管理不到位,什么連接都要出問題。北京多個奧運工程、央視大廈、北京電視中心的大尺寸
厚板鋼梁焊接都可以保證質量,難道一般的幕墻焊接就無法保證質量?所以保證質量不是禁止焊接的理由。
因此,
JGJ102-2003和修訂中的JGJ133規范,刪除了這一不合理規定,代之以對焊接設計和施工的相應規定。
4.3 化學錨栓的受熱問題
化學
錨栓主要靠化學
粘結劑完成連接,而一般化學粘結劑對溫度的耐受能力較弱,因此
JGJ102-2003規范規定:在有可能導致化學錨栓溫度升高的熱影響區范圍內,不應對鋼連接件進行焊接作業。但是,如果不是進行連接焊縫施焊,而僅僅是對
螺帽下的
墊板進行間斷、快速的少量定位點焊,不至于使化學錨栓溫度升高過多,應該是允許的。
當確實需要進行連續焊接作業時,應采取相應散熱措施,或采用
耐熱化學錨栓。
4.4 后加錨栓的安全度
在
JGJ133-2001中未對錨栓安全度作出規定,
JGJ102-2003中規定不具體。在JGJ133修訂中明確列出:后加錨栓
承載力設計值應按其極限承載力
標準值除以材料性能
分項系數后采用。錨栓材料性能分項系數,對
可變荷載作用不應小于2.15;對
永久荷載作用不應小于2.50。即是說,錨栓的總安全度對可變
荷載作用約為3.0;對永久荷載作用大約為3.5。
4.5 高強硅酮結構膠的強度設計值
國家標準《建筑用
硅酮結構
密封膠》GB16776中,結構膠的粘結
抗拉強度定為0.6N/mm2,因此在
風荷載和地震作用下,其強度設計值f1取為0.2N/mm2;在永久荷載作用下,其強度設計值f2取為0.01N/mm2。
由于
高性能硅酮結構膠(如白云SS922)的粘結
拉伸強度可以達到1.2N/mm2,甚至1.5 N/mm2,再采用上述規定不盡合理,因此JGJ133修訂中規定,高性能硅酮結構膠,f1可按其粘結
拉伸強度標準值除以系數3.0后采用;f2可按其粘結拉伸強度標準值除以系數60.0后采用。
相應地,高性能膠的變位承受能力δ,取對應于其受
拉應力為0.7 f1時的
伸長率。
與【】相關熱點資訊:
【了解更多 “” 相關信息請訪問
幕墻專區 】
上一頁123下一頁