2.2 采用分體柱
由于短柱的抗彎承載力比抗剪承載力要大得多,在
地震作用下往往是因剪壞而失效,其
抗彎強度不能完全發揮。因此,可人為地削弱短柱的抗彎
強度,使抗彎強度相應于或略低于
抗剪強度,這樣,在地震作用下,柱子將首先達到抗彎強度,從而呈現出延性的破壞狀態。
人為削弱抗彎強度的方法,可以在柱中沿豎向設縫將短柱分為2或4個柱肢組成的分體柱,分體柱的各柱肢分開配筋。在組成分體柱的柱肢之間可以設置一些連接鍵,以增強它的初期剛度和后期耗能能力。一般,連接鍵有通縫、預制分隔板、
預應力摩擦阻尼器、素砼連接鍵等形式。
對分體柱工作性態的理論分析和試驗研究表明[3~4]:采用分體柱的方法雖然使柱子的抗剪承載力基本不變,抗彎承載力稍有降低,但是使柱子的
變形能力和延性均得到顯著提高,其破壞形態由剪切型轉化為
彎曲型,從而實現了短柱變“長柱”的設想,有效地改善了短柱尤其是剪跨比λ≤1.5的超短柱的抗震性能。分體柱方法已在實際工程中得到應用[5]。2.3 采用鋼骨砼柱
鋼骨砼柱由鋼骨和外包砼組成。鋼骨通常采用由
鋼板焊接拼制或直接扎制而成的工字形、口字形、十字形截面。
與
鋼結構相比,鋼骨砼柱的外包砼可以防止
鋼構件的局部
屈曲,提高柱的整體剛度,顯著改善鋼構件出
平面扭轉屈曲性能,使
鋼材的強度得以充分發揮。采用鋼骨砼結構,一般可比鋼結構節約鋼材達50%以上[6]。此外,外包砼增加了結構的
耐久性和
耐火性。與鋼筋砼結構相比,由于配置了鋼骨,使柱子的承載力大大提高,從而有效地減小柱截面尺寸;鋼骨翼緣與箍筋對砼有很好的約束作用,砼的延性得到提高,加上鋼骨本身良好的
塑性,使柱子具有良好的延性及耗能能力。
由于鋼骨砼柱充分發揮了鋼與砼兩種材料的特點,具有截面尺寸小,自重輕,延性好以及優越的技術經濟指標等特點,如果在高層或超高層鋼筋砼結構下部的若干層采用鋼骨砼柱,可以大大減小柱的截面尺寸,顯著改善結構的抗震性能。
2.4 采用鋼管砼柱
鋼管砼是由砼填入薄壁圓形鋼管內而形成的組合
結構材料,是套箍砼的一種特殊形式。由于鋼管內的砼受到鋼管的側向約束,使得砼處于三向受壓狀態,從而使砼的
抗壓強度和極限壓應變得到很大的提高,砼特別是高強砼的延性得到顯著改善。同時,鋼管既是縱筋,又是橫向箍筋,其管徑與管壁厚度的比值至少都在90以下,這相當于配筋率至少都在4.6%以上,這遠遠超過抗震規范[2]對鋼筋砼柱所要求的最小配筋率限值。由于鋼管砼的抗壓強度和變形能力特佳,即使在高軸壓比條件下,仍可形成在受壓區發展塑性變形的“壓鉸”,不存在受壓區先破壞的問題,也不存在像鋼柱那樣的受壓翼緣屈曲失穩的問題。因此,從保證控制截面的轉動能力而言,無需限定軸壓比限值[8]。規程[9]規定,鋼管砼單肢柱的承載力可按式(3)計算:
N≤φ1φeN0(3)
式中,;
θ=faAa/fcAc稱為套箍指標,0.3≤θ≤3;
φ1,φe的物理意義及計算方法見規程[9]。
由式(3)可以看出,當選用了高強砼和合適的套箍指標θ后,柱子的承載力可大幅度提高,通常柱截面可比
普通鋼筋砼柱減小一半以上,消除了短柱并具有良好的抗震性能。
3 小 結
1確定是不是短柱不宜按H/h≤4來判別,而應按剪跨比λ=M/Vh≤2來判別。一般情況下,可采用本文式(2)來判別。當需要初步判別是否屬于短柱時,可先按D值法確定反彎點高度比yn,然后按本文式(2)來判別。
2當按剪跨比λ判定柱子不是短柱時,按一般框架柱的抗震要求采取構造措施即可;確為短柱,就應當盡量提高短柱的承載力,減小短柱的截面尺寸,采取各種有效措施提高短柱的延性,改善短柱的抗震性能。使用復合螺旋箍筋,采用分體柱技術均可有效地改善短柱的抗震性能;采用鋼骨砼、鋼管砼等新結構,可顯著提高柱的承載力,減小柱截面尺寸,避免在結構下部出現短柱尤其是超短柱。因此,在高層建筑抗震設計中應根據工程的具體情況,盡量采用上述新結構、新技術,來避免短柱脆性破壞問題的發生。
與【】相關熱點資訊:
【了解更多 “” 相關信息請訪問
幕墻專區 】
上一頁12下一頁